
An Offline Occupancy Mapping Implementation for
the Microsoft Hololens 2

Kaan Akduman, Noelle Nelson, Tyler Petrie

Electrical, Computer, and Systems Engineering 499
Project 1 Report

Abstract— This report describes our efforts to build a 3D mapping
of a room from infrared (IR) sensor data acquired by the
Microsoft Hololens 2. 42 sensor scans were acquired and
successfully processed offline to create a maximum-likelihood
graph depicting the occupancy of Olin 410 across three different
horizontal planes at varying heights.

I. INTRODUCTION

This project explores the implementation of
occupancy grid mapping algorithms using data
collected from off-the-shelf hardware. The ability to
map spaces is critical for the operation of robots and
autonomous devices, but mapping of spaces can be
extended to other research realms.

This project explored mapping algorithms for use
with Augmented Reality (AR) applications.
Mapping is important for AR applications because
the system needs to be able to orient itself in space in
order to place holograms within reality. The AR
device that was used for this project was the
Microsoft Hololens 2. The sensors on the Hololens
2, including an RGB camera, infrared (IR) depth
sensors, and gyroscopes, can be used to create a
mapping of a space.

The goal of this project was simply to create a
MATLAB program that can take raw sensor data
from the Hololens 2 and build an occupancy grid
map. One application of this technology is to help
with rehabilitation for those with spinal cord injuries
(SCI). The Hololens 2 can be used to create a
mapping of their home in order to determine where
potential modifications could be made in order to
make day to day tasks easier. Due to the translational
applications of this approach, we decided to combine
existing data collection and processing software with
mapping algorithms discussed in class to make an
implementation that can be widely accessible.

II. METHODS

The processing of our IR sensor data was done
with a combined approach in MATLAB and Python.
This was partially due to the skills of our group
members but was also done to improve the ease of
processing sensor data.

A. Sensor Data Acquisition and Pre-Processing

For this project, data was collected using the
StreamRecorder application for the Microsoft
Hololens 2 [1]. This application was created to
provide researchers with direct access to the color
camera and infrared (IR) depth cameras to use for
computer vision and robotics systems. The Hololens
2 also provides the user with hand, head, and eye
tracking data, as well as acceleration and orientation
measured with on-board gyroscopes.

Due to the simplicity of the room layout, we
decided to capture data in Olin 410. We marked out
a 10ft by 10ft grid on the floor and defined an upper
left triangle using the line y = x, which can be seen
in Figure 1a. This defined our x and y-plane as we
faced the entrance, which we refer to in this report as
our world frame. To align the world frame with the
Hololens, the user stood at the location (0,0) when
the StreamRecorder application was launched. The
user then walked 10 feet in the positive y-direction,
before turning 90 degrees and walking 10 feet in the
positive x-direction. Finally, the user turned 45
degrees to walk back to the world origin point. This
was repeated while gathering IR data in order to
achieve a complete scan.

To interpret the results of our scans, we had to
transform the data from depth images to camera
space, and then from camera space to grid space.



Figure 1a: Photograph showing Olin 410, where data was captured. The tape on
the floor marks our x and y axes, as well as the line y=x.

Figure 1b: A depth image captured by the StreamRecorder application prior
to processing. Lighter pixels correspond to objects that are farther from the
sensor, while darker pixels represent closer objects. The black pixels around the
edge are data that is not captured due to the arcing nature of the IR scan. The
black rectangles on the wall are a window, which is not well detected by IR
imaging

This was achieved through the combination of
multiplying multiple transforms in order to move
between coordinate frames and using a truncated
signed distance function (TSDF).

The coordinate transformations used in this
process can be seen in Figure 2. It should be noted
that these frames are not the same as traditional
computer vision principles would dictate. In order to
build our map, we had to construct a point cloud in
the world frame. This required moving from a depth
image, to camera space, to grid space, and then
finally transforming between grid space frames.
Transformations in grid space can be completed as
follows:

𝑇
𝑑𝑒𝑝𝑡ℎ 𝑐𝑎𝑚𝑒𝑟𝑎/𝑤𝑜𝑟𝑙𝑑

= 𝑇
𝑅𝐺𝐵 𝑐𝑎𝑚𝑒𝑟𝑎 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡/𝑤𝑜𝑟𝑙𝑑

* 𝑇
𝑐𝑢𝑟𝑟𝑒

Figure 2: Coordinate frames for the Microsoft Hololens 2. The Rig
Coordinate Frame is designated as the central transformation for all sensors and
is placed at the left RGB camera. The depth sensor is located in the middle of
the HMD, and it can be located by multiplying the Extrinsics Transform by the
Rig Coordinate Frame Transform. The coordinate frames are defined with the
z-axis pointing away from the user, towards what they are looking at. [3]

Conversion from the depth images to camera
space, and again to grid space, was done using the
aforementioned Python scripts. To extract the
location of each point in camera space, each depth
sensor image was multiplied by a binary lookup
table, which provided the x, y, and z location of each
point. The location of each point was then
transformed to grid space through the TSDF process.
This TSDF process aligned the 42 frames with the
world frame and combined each frame to create a
volume with a voxel size of 0.04m. The TSDF
process is a raycasting method that increments
through each frame captured by the Hololens 2 by
providing weights for each grid that depends on the
distance and angle of the surface. This TSDF creates
almost perfect alignment with our world coordinate
system, however, a rotation about the x-axis is
performed in MATLAB since the camera defines the
z-plane as directed away from the user, instead of up.
Finally, since the initial RGB camera frame is
determined by the location of the Hololens 2 relative
to the room upon launching the app, the data points
had to be shifted down 1.5 meters to account for the
user’s height. Figure 4 shows the completed point
cloud, after final processing in MATLAB.

To accomplish these tasks, data was downloaded
from the Hololens 2 for offline processing via a WiFi
connection through the Windows Device Portal. This
data consisted of a set of 42 depth images
(containing the distance at each pixel in uint16), a
lookup table to convert these images from 2D pixel
space to 3D camera space, and two transformation
matrices to align the depth sensor with the world
frame. The TSDF process also assigns each point a
color value based on the captured RGB data, but this
was removed from our visualizations for simplicity.



Fig. 3 Complete point cloud showing IR sensor data in MATLAB.
Traditionally, the color would depict distance from the sensor where warmer
colors indicate objects that are farther away. Due to the rotation matrices
associated with transforming the data to and from the depth sensor frame, The
(0,0,0) point is aligned with the world frame origin.

An example of a depth image, and a comparison to
the room, is shown in Figure 1b. Initial
preprocessing was done to create point clouds of
each scan using Python scripts provided by the same
Microsoft Team who developed the StreamRecorder
application [2].

Once processed, the grid space was
segmented into several planes to create a “floor”
mapping to determine the number of points in each
grid cell.

B. Occupancy Grid Map Construction

We took our .mat file of the combined grid
spaces where we had a point cloud including the x,
y, and z coordinates of all hits from all of the grid
spaces. We converted this file into an excel file so
that we could more easily import it into our Python
script. The Python script, which you can view at
https://github.com/akdukaan/ecse499, begins by
using the pandas read_excel method on the file
which allows us to more easily read and manipulate
the data. We then declared a variable called
cell_count and initialized it to 10. This value
represents the number of bin lengths per meter. A
value of 10 means that our bins are split up into 1/10
meters, or 10cm x 10cm bins. Using a number too
small resulted in large bin sizes which made it
difficult to see finer details. Using a number too

large resulted in small bin sizes with very few hits
per bin, and this caused many bins to have an
excessively high belief. We chose the number 10
because we found that it balanced the tradeoffs well.
The script goes through each hit and adds 2 to both
the x and y coordinates. This allows us to more
easily plot the data because all of the x, y, and z
coordinates are positive values. Then, the code
creates three different matrices to store the number
of times that a hit was in that bin. We chose to create
three of these matrices because it allowed for one to
perceive depth without overcrowding the plot. Hits
with low z values fell into the bottom plane, hits
with medium z values fell into the middle plane, and
hits with high z values fell into the top plane. After
constructing these matrices, we are able to plot the
data to our 3D graph with the number of times that a
bin has been hit correlating to the brightness of the
point representing the bin. Figure 4 represents a
superposition of data captured from two IR scans,
with the points from each plotted in different colors
(pink and green). As more scans are added, areas
with high overlap (that, therefore, have a higher
likelihood of being occupied) will count more hits
than areas with low overlap between scans (and
alternatively may indicate a false detection by the
sensor).

An occupancy grid map represents the
environment as a grid. It estimates the probability
that a location is occupied by an obstacle by the
belief equation. One way of implementing the belief
equation is through the inverse sensor model or the

https://github.com/akdukaan/ecse499


Figure 4: A plot showing point clouds from two subsequent frames plotted
on top of each other, one in pink and the other in green. This figure illustrates
the superposition of points as the full point cloud is constructed. These points
will be counted to create our mapping of Olin 410.

log-odds representation. A simpler way is just to
count the number of hits where a hit is defined as the
number of cases where a beam ended in that bin and
a miss is defined as the number of times that a beam
passed through that bin. We can calculate the belief
with the following equation:

𝐵𝑒𝑙( 𝑚[𝑥𝑦]) =  ℎ𝑖𝑡𝑠(𝑥,𝑦)
ℎ𝑖𝑡𝑠(𝑥,𝑦) + 𝑚𝑖𝑠𝑠𝑒𝑠(𝑥,𝑦)

We can then use this belief to determine the color of
each bin.

Our implementation of the occupancy grid map
is slightly different from the one described above.
Our sensor does not keep track of which bins a beam
passes through. Since we also don’t have the
position from which each reading was taken, we also

Figure 5: A 3D occupancy grid map constructed using our Python script

cannot calculate this data. Instead, we had to assume
that any reading that was not a hit in a bin was a
miss. This resulted in all points having a very low
belief, and thus having a very dark point in our
occupancy grid. To account for this, we had to
magnify the belief at each point, and we did this by
multiplying all beliefs by an alpha such that the
largest belief was equal to 1. One downside to this
method is that our occupancy grid colors the area
beyond the wall as black showing that we believe
that it is unoccupied space. However, this is not a
fair belief as we have no hit or miss information for
this grid area. Since we have no information about it,
we would assume that there is an equal probability
that the space beyond the wall could be occupied or
not occupied, and should therefore be colored gray.

C. Most-Likely Mapping Determination

To create a most-likely mapping determination
from an occupancy grid map, one would normally
clip the occupancy grid map at a threshold of 0.5.

In our implementation of the most-likely mapping
determination, which you can view the source of at
the same GitHub repository linked earlier, this
threshold seemed too high and only resulted in a few
of our bins being plotted white. This is likely due to
the improper calculation of our occupancy grid map
beliefs. To create the graph below, we used a
threshold of 0.2 instead.

Figure 6: A 3D most-likely mapping determination constructed using our
Python script.



III. DISCUSSION & LIMITATIONS

While this project had some success creating a 3D
occupancy map there are many significant
limitations with our current solution.

A. DISCUSSION OF RESULTS

In this project, we were able to successfully
record, download, and process IR scanning data
from the Microsoft Hololens 2 and build a likelihood
mapping. This mapping was performed with real
data collected on campus, and largely utilized
existing hardware and software. Depth images were
processed and converted to point clouds, which were
then used to calculate the occupancy grid mapping
based on the number of hits and misses in each
sensor reading. This grid map was then used to
create a maximum-likelihood mapping.

B. OFFLINE PROCESSING

The first limitation is that our implementation is
offline only, meaning that it can’t be done in
real-time. While this works fine in order to collect
the data and create the map, it may not be ideal in
real-world applications. Since the map cannot be
made using an application running onboard the
Hololens 2, the data must be downloaded from the
Hololens to a separate computer. This not only takes
more time but also could be inconvenient if the scan
data was not good. For example, if data was
collected from a specific location, the user would not
be able to check to see if the map was good until
processing the data. Furthermore, since the
download process can take a significant amount of
time the user may need to go to a different location
to do this, depending on the application. This means
if the data was captured incorrectly or some feature
of the space was missed then the user would have to
revisit the location in order to recreate the map.

C. LIDAR VS IR SCANS

Our implementation was also limited by the
algorithms we could use given the sensor data we
collected. Many of the SLAM algorithms we
explored used point clouds generated from LIDAR
data. However, we only had data from IR scans.
Originally, we tried to convert our IR scans into 3D
point cloud data, in order to adapt the LIDAR
algorithms for the data from the Hololens. There
were two primary challenges when trying to
transform our data into something similar to a
LIDAR point cloud. The first spatial transformation
from the camera space of the IR scan to the

three-dimensional world space proved to be difficult,
this was especially because LIDAR data exists in a
spherical shape, while the IR scan data exists in a
grid space making the algorithm incompatible with
our data. Additionally, we also had to transform each
of our data frames from the camera space to the
world space. While this is theoretically possible,
since we had odometry data from the Hololens 2, it
was difficult to properly line up and transform each
data frame to make one cohesive image. We
struggled with misaligned data frames. Furthermore,
LIDAR data scans tend to have higher quality
images than IR scans. This increased the
incompatibility of our data with the algorithms that
we were trying to use, as well as simply not being
able to create as high-resolution images as could be
done with LIDAR.

D. COUNTING VS OCCUPANCY GRID MAP

Another shortcoming in our implementation was
in calculating the probability that each cube in our
grid was occupied. The original plan was to calculate
the probability of whether or not each space on the
grid map was occupied for each individual scan, and
then combine these probabilities to find the most
likely map. However, we ended up being more
successful using a simple counting algorithm. Rather
than calculating the probability of each point for
each scan we simply added up the number of times
each point in the gridspace was hit for all of the
scans. This means that our gridmap ended up being a
representation more of the frequency that a space
was occupied rather than the probability that it was
occupied. While this works, for a crude estimate of a
map, it is not as robust as calculating the probability
for each scan. It is more susceptible to error in that a
space may appear more likely to be occupied simply
because it was visited more often than other spaces.

IV. CONCLUSIONS & FUTURE WORK

This project demonstrates a successful
implementation of offline occupancy mapping using
commercially-available hardware and real world
sensors. While there are some limitations with the
approach and a counting method may lead to a less
exact occupancy mapping, this is acceptable for
applications where there is low risk of hitting
obstacles in the map.

Further work on this project can explore taking an
increased number of slices along the z-axis of the
world frame, to get higher resolution by increasing
the number of horizontal planes. Additional work



would explore improving the transformation of
individual frames in order to better count the
probability of a square being occupied. Finally,
location tracking and feature extraction can be used
to monitor for loops in the user’s trajectory, and
expand the project from mapping to a localization
and mapping problem.

There are many applications for this project, some
of which connect to our own research. Algorithmic
mapping and path planning can be used to help
people with newly acquired SCI assess
maneuverability in their homes. A map of their home
space, combined with a path planning algorithm, can
detect locations where collisions may occur and
where modifications may need to be made to assure
safe operation of a wheelchair around the home.
Alternatively, mapping of the home space can help
people with SCI and their care team determine if
certain assistive technologies can fit in the rooms
where they may need to be used. Due to the shape of

some assistive technology, especially patient-assisted
lifts, it is critical to get 3D mapping data, as opposed
to a 2D floor scan. This will allow for a more
accurate depiction of the home space and the
interaction between assistive technologies and their
environment.

REFERENCES

[1] D. Ungureanu, Dorin, F. Bogo, S. Galliani, P. Sama, X. Duan, C.
Meekhof, J. Stühmer, T. J. Cashman, B. Tekin, J. L. Schönberger, B.
Tekin, P. Olszta and M. Pollefeys. “HoloLens2 Research Mode as a
Tool for Computer Vision Research”. arVix:2008.11239. 2020.

[2] D. Ungureanu, Dorin, F. Bogo, S. Galliani, P. Sama, X. Duan, C.
Meekhof, J. Stühmer, T. J. Cashman, B. Tekin, J. L. Schönberger, B.
Tekin, P. Olszta and M. Pollefeys. “HoloLens2ForCV:
StreamRecorderConverter”. GitHub Repository.

[3] D. Ungureanu and P. Sama. “HoloLens 2 Research Mode: API
Overview” ECCV 2020 Online. August 2020.


