
An RRT* Path Planning Implementation for a 4-DOF
Laparoscope with 3D Visualization

Kaan Akduman, Noelle Nelson, Tyler Petrie

Electrical, Computer, and Systems Engineering 499
Project 2 Report

Abstract— This report describes the process and results of
creating a motion planning algorithm for a 4 DOF laparoscope as
well as a program in Unity to interactively view the results. This
was accomplished by using an RRT* motion planning algorithm
implemented in Python.

I. INTRODUCTION

Laparoscopic procedures are commonly used as a
minimally invasive way to operate on a patient. This
technique allows the surgeon to only make a few
small incisions, inserting a camera and other
instruments through the small incisions. While this
makes the recovery much easier for the patient, the
surgeon has a much poorer visualization of the
operating environment. It can be hard to go from
looking at the 2D visualization of the camera view
from the laparoscope to working in the 3D space of
the surgery.

Our project’s goal was to create a program in
python that utilizes a path planning algorithm to
guide a 4 degree of freedom (4-DOF) laparoscope
from its initial position to a point where it could
view the target, additionally we replicated the robot’s
motion, the path, and the target in Unity. A user can
interact with the system using two joysticks to
follow that path using that camera. The path that we
found is an optimized and smooth path so that the
user can follow it to the goal efficiently and with
minimal risk of disrupting other organs.

II. METHODS

In order to accomplish our goal, we set up the
environment in Python and used Denavit-Hartenberg
parameters to place the scope in world space. We
then used an RRT* path planning algorithm in order
to find an optimized path which we then smoothed
the path using a moving average filter. Finally, we

replicated the system in Unity to provide better
visualization, as well as an interactive system.

A. Environment

In order to create a simple version of the surgical
environment, we created small boxes, with a point
on the inside that was our target. Realistically, the
robot merely needs to be able to see inside of the
box. However, in order to implement the motion
planning algorithm, it was useful to have an exact
goal point that the camera simply needed to get close
to.

In order to accomplish this, we created a cloud of
points that made up the box and the goal. The user
can then input angles of rotation and distances of
translation in order to move the box anywhere within
the workspace. This box serves as both the target and
the obstacle as the goal is to be able to look inside
the box and see the target without hitting the box.

B. Model Kinematics

For this project, we based our robot model on a
4-DOF laparoscopic surgery robot developed by
Alassi et. al [1] and shown in Figure 1. This robot
can account for four parameters, the pitch and yaw
of the insertion tool, the depth of the tool, and the
roll of the tool which drives the orientation of the
camera. This can be represented as an RRPR robot,
as shown in Figure 2. For our implementation, we
are placing a camera at the end effector, rather than a
surgical tool. The camera was mounted on the end of
the probe at a 45-degree angle.

Working from this model, we built a
Denavit-Hartenberg table to construct our rotation
matrices to build a motion model for our system.
This model takes four parameters: q1, q2, q3, and



Figure 1: Visualization of laparoscopic robot with
revolute and prismatic joints superimposed [1]

q4. These parameters are the control commands
for the pitch, yaw, depth, and roll, respectively. We
used the Denavit-Hartenberg parameters to construct
a rotation matrix that contains the orientation and
displacement of each robotic joint relative to the
previous one. By multiplying these matrices
together, we can determine the orientation and
location of the end point, or the camera, which is
used to calculate the distance to the target in our
RRT* algorithm.

Table 1: Denavit Hartenberg Parameters for a
4-DOF Laparoscope Robot

Joint r d ∝ Θ

0 0 0 -pi/2 q1

1 0 0 -pi/2 q2

2 5 + q3 0 -pi/2 0

3 0 0 0 q4

C. RRT * Implementation

We decided to use Python for our algorithm. In our
RRT* algorithm, a random configuration is chosen.
We refer to this configuration as qrand. We then loop
through our list of visited nodes looking for the node
that is closest to random configuration in
worldspace, which we call qnearest. We then
compute a step toward qrand from qnearest. To
compute this step node, qstep, we set qstep to qrand,
calculate qstep’s worldspace, and then until qstep is
within a specified step distance of qnearest, update
qstep’s configuration space to be halfway between

its current configuration space and qnearest’s
configuration space. Then, if qstep does not collide
with any of our obstacles, we connect it to the graph
and recursively update both the cost and the parent
of all of its neighbors. When a node’s worldspace is
within a given range of the goal, we consider the
goal found. However, we can and do continue to
iterate through this process to find a more optimal
path to the goal. If you wish to learn more about our
algorithm, you can view the source code on GitHub.

D. Smoothing

The purpose of smoothing the function is to create
a clearer path for the surgeon to follow. The output
path of the RRT* algorithm can often be choppy,
with sharp corners, the smoothing algorithm simply
smooths the path out in order to create a cleaner
path.

Originally, the plan was to use a Kalman
Smoothing Algorithm, such as the
Rauch-Tung-Striebel algorithm [2], however, the
Kalman Filter approach required measurement data
which we did not have, therefore, we opted to use a
simpler moving average filter, as it was much easier
to implement and was effective at smoothing out the
path. The moving average filter simply takes the
average of the previous point, the current point, and
the future point, in order to calculate a new path.

E. 3D Visualization

The goal for this project is to be able to visualize
the path and control the movement of the camera in
3D. Using Unity, a game development engine, we
built a 3D cylindrical representation of our

https://github.com/akdukaan/ecse499


Figure 3: Side-by-side third-person and
first-person view in Unity. The left side shows the

laparoscope reaching the box, but not passing
through it, to look at the sphere. The right side

shows the first-person camera view, a sphere in a
pink fleshy environment.

laparoscopic camera. This 3D model is composed of
three cylinders put together, each controlling a
different motion of the camera located coincident to
the end of the robot and oriented at a 45° angle
around its y-axis. This model, as well as a sample
path, can be seen in Figure 4.

To control the robot, the user can operate two
2-DOF joysticks shown in Figure 5. The direction of
these joysticks is read by an Arduino Uno and
passed to Unity to handle the motion of the robot.
These values are multiplied by a scaling factor set by
the user to increase or decrease the speed of rotation
and translation, and multiple scaling factors can be
used for different motions.

Our optimal path calculated by RRT* can be
plotted by hand in Unity for the user to follow with
their camera. When using this program to train, the
user can use the first-person camera view or a
third-person view where they can see the whole
environment. A side-by-side comparison of these
points of view is shown in Figure 3. While a
first-person view may be more akin to a real-world
scenario, the third person view may be useful for
training and familiarizing the user with controls.

III. DISCUSSION & LIMITATIONS

This project was overall successful in
accomplishing the goals that were originally set for
ourselves. There are still things that could be
improved upon before implementing this program as
a tool.

A. DISCUSSION OF RESULTS

Overall our algorithm was successful in reaching
the goal and avoiding obstacles. We originally ran
our algorithm with just one box and goal. The result
of this can be seen in Figure 6. The blue path is the

Figure 4: Screenshot of third-person view of 3D
rendering in unity. The laparoscope is shown in

teal, with a sample path shown in white. The grid
box is the target region, with a sphere inside as the

target for the camera to look at.

Figure 5: Image of the two joysticks connected to the
Arduino. Horizontal movement of the left joystick

controls pitch while vertical movement controls yaw.
Horizontal movement of the right joystick controls

roll while vertical movement controls depth.

original path from the RRT* algorithm and the
orange path is the path after smoothing. We then
added a second obstacle that was in the way of the
original path to see if the algorithm could adjust and



avoid the obstacle. The results of this can be seen in
Figure 7. When the two figures are compared it can
clearly be seen that the algorithm adjusts the path to
avoid the obstacle.

Figure 6: Results of the RRT* algorithm with one
box and goal.

Figure 7: Results of the RRT* algorithm after
adding a second obstacle. The goal is the same as

in the figure above.

B. RRT* COMPUTATIONAL REQUIREMENTS

RRT* differs from RRT in a few ways. In RRT,
when we calculate the position of qstep, we would
connect qstep to the map through its closest visited
configuration. In RRT* however, we connect it to
the neighbor that gives it the smallest cost to reach
that node. Additionally, after connecting a new node,
we must recalculate the costs of nodes that are near

the new node. If any of the nearby nodes can be
reached through the new node to give it a lesser cost,
we reconnect those nodes through the new node.
After updating any nodes this way, we must also
recursively update their neighbors to reflect the
current node’s new cost. [3] This recursive
processing makes RRT* take much longer than RRT.
Consider the scenario where we have thousands of
nodes in a graph. If our next random node is near the
initial configuration and we find that one of our
visited configurations has a better cost when
connected to our new node, that node will update
which will recursively update all of its children
nodes. Therefore, as the number of iterations of the
loop increases, the computational requirements
increase exponentially.

However, even with only a few iterations,
RRT* is slow. One of the slowest parts of the
algorithm apart from recursively updating neighbor
nodes is collision checking. Collision checking
slowed things down because we wanted to check to
make sure that the camera’s vision was unobstructed.
We did this by iterating through the line segment
between the camera and its viewpoint and checking
if that area was obstructed in each iteration.

Despite these disadvantages, RRT* can
sometimes be preferred over RRT because it can,
given infinite time, find an optimal path between two
points. And even with only a finite amount of time,
it will continuously update and optimize the cost to
reach the goal.

C. RANGE OF MOTION

There are some limitations of where the
Laparoscope can reach. Since a laparoscope has a
minimum and maximum depth that it can reach and
its yaw and pitch can only rotate so far, there lies
only a limited area through which objects can be
seen by the laparoscope.

This made choosing targets somewhat
difficult as our targets were made using a rotation
translation matrix. We sometimes generated targets
that could not be reached due to the limited range of
motion of the scope. In the future, it would be useful
to have a method to ensure that the euclidean
position of the goal is within reach of the scope.

D. REALISM

One shortcoming of this project is that it is not the
most realistic representation of what laparoscopic
surgery is actually like. Our version of the
environment is a greatly simplified version of reality.



In our model, the obstacles are very clearly defined,
and everything is static and stable.

In a real operating situation, the goal and the
obstacle will not be able to be as clearly defined.
Additionally, there are other complicating factors
such as potential movement of the obstacles, organs,
and even the point of entry.

Additionally, the Unity visualization clearly looks
much different than the view from an actual
laparoscope camera would. The physical controls are
different, and the velocity was chosen by the user
and may not reflect actual laparoscopes. Other
considerations with Unity include that the rendering
was spotty at times, and the box would disappear if
the user got too close. Additionally, the 3D
environment was incredibly simplified and would
need to be scaled and shaped to better resemble a
human body.

E. OFFLINE PATH PLANNING

Another shortcoming of this algorithm is that all
of the processing is done offline. The obstacles and
goals need to be fully known before the algorithm
can be run. This would make it difficult to apply to
real-life situations where there may need to be
measurements or imaging to fully characterize the
environment. Additionally, the path needs to be fully
computed before it can be displayed and if there are
any small adjustments that need to be made, the
process would have to start again from the
beginning.

IV. CONCLUSIONS & FUTURE WORK

Overall this project was successful as a proof of
concept for our algorithm, but there are still some
significant barriers to real-life implementations.

Future work may include being able to shift the
web of nodes in order to account for any movement
that may occur either at the point of entry of the
probe or with the obstacles themselves. Another
interesting idea to pursue would be to test the
algorithm with multiple goals to see if it could go
from one goal to another while adding on to the
same web of nodes. This would add another layer of
complexity and usefulness to the program.

REFERENCES

[1] A. Alassi, N. Yilmaz, M. Bazman, B. Gur and
U. Tumerdem, "Development and Kinematic
Analysis of a Redundant, Modular and
Backdrivable Laparoscopic Surgery Robot,"
2018 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM), 2018,
pp. 213-219, doi: 10.1109/AIM.2018.8452712.

[2] Jeffrey W. Miller. “Lecture Notes on Advanced
Stochastic Modeling”. Duke University,
Durham, NC. This work is licensed under a
Creative Commons BY-NC-ND 4.0
International License. 2016.

[3] T. Chin, “Robotic Path Planning: RRT and
RRT*,” Medium, 26-Feb-2019. [Online].
Available:
https://theclassytim.medium.com/robotic-path-p
lanning-rrt-and-rrt-212319121378.

https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-212319121378
https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-212319121378

