
Efficient Path Finding Over Directed Acyclic Graphs
Through Pruning

Kaan Akduman
Department of Computer and Data Sciences

Case Western Reserve University
Cleveland, Ohio

kxa317@case.edu

Maryam Iqbal
Department of Computer and Data Sciences

Case Western Reserve University
Cleveland, Ohio

mxi128@case.edu

ABSTRACT
This paper attempts to implement and extend on the FELINE
algorithm discussed by Veloso et al. for the use case of efficiently
finding a path in Queen Elizabeth II’s family tree represented as a
directed acyclic tree (DAG) to help simplify social analysis. It is
based on the course project topic of making big data small within
the theme of making big networks smaller to support faster path
search. The pruning algorithm implementation provides results
over 96% faster than an unpruned search algorithm in the DAG
created for the family tree.

CCS CONCEPTS

~ Information systems

~ Data management systems

~ Database design and models

~ Graph-based database models

~ Network data models

KEYWORDS
Computer Science, Reachability Queries, Graph Indexing,
Database Management, Discrete Mathematics, Graph Theory,
Graph labeling, Graph algorithms, Path Finding

1 Introduction
Developing scalable methods for the analysis of large sets of
graphs, including graphs that model social structures, is a
challenging task as seen in recent literature. With the
ever-expanding nature of the size of graphs reaching millions of
node sizes, efficient algorithms are needed for handling the
graphs. A common problem is verifying whether a vertex is
reachable from another. [1] This paper adapts that problem for a
family tree. In a graph with a set of vertices and edges, a
reachability query would ask whether a vertex is connected to
another vertex and path of edges required to reach it. When used
for a family tree, this helps us find if a relationship exists between
two entities; if one is the ancestor of the other. A common
approach seen in similar papers in the area is the preprocessing of
graphs in order to produce an efficient index structure, allowing

fast access to the reachability information of the vertices.
However, the majority of these existing methods can not handle
very large graphs. [1]

This paper hence builds upon the work of FELINE (Fast rEfined
onLINE search), an index building method that creates indexes
from the graph and represents them in a two-dimensional plane
that provides reachability information in constant time for a
significant portion of queries. [1] We have adapted the FELINE
algorithm in this paper to help in finding connections between
people in the family tree of Queen Elizabeth II. This fits into the
first theme of the course project options of making big data small
whereby we make big networks smaller to support faster path
search.

In section 2, we discuss the background behind directed acyclic
graphs, the basics of topological sorting, two common algorithms
of topological sorting, and the FELINE algorithm including
pseudocode as well as other theoretical concepts pertaining to our
work. In section 3 we discuss the differences between our
algorithm and FELINE. We also discuss the data collection
process, the implementation of our algorithm, and its use case on
Queen Elizabeth. In section 4, we discuss and evaluate
experimental results regarding the performance values of our
algorithm compared to similar algorithms with other levels of
pruning. We also show graphs demonstrating the assignment of
indices to vertices in the graph. Section 5 includes the conclusion
and possible extensions of our current work.

2 Background
In this section, we will discuss the theory behind some of the
algorithms we used.

2.1 Directed Acyclic Graphs
Directed acyclic graphs are graphs that only have directed edges
and do not contain any cycles. They have vertices and directed
such that no cycle exists. They are often used to visualize the flow
of values between nodes and to provide optimization techniques
on a network of data. [2]

2.2 Topological Sort
Topological sorting is when in a directed graph, there is a linear
ordering of vertices such that for every directed edge ab from a
vertex a to vertex b, and a comes before b in the ordering. A
topological sort then provides a valid sequence for the tasks in the
nodes of the graph. [3]

Figure 1: The left side shows a directed acyclic graph and the
right side shows one possible topological sorting of the graph.
[4]

All DAGs must have at least one topological ordering, but a
DAG can have more than one valid topological sorting. [3] For
example, in Figure 1 above, there are multiple ways in addition to
the sorting shown on the right side for topological sorting of the
LHS graph. For example, the 3 could have been moved between
the 5 and the 6 and it would still be valid. It also could have been
moved after the 6 and also be valid as all conditions are still
satisfied. [4]

2.3 Topological Sort Based On Depth First Search
One topological sorting algorithm is based on a depth first search
(DFS). In this case, a temporary stack is used where rather than
printing vertices immediately after they are reached, we
recursively call the topological sorting algorithm on all its
adjacent vertices before pushing it to the stack. Then, the stack is
topologically sorted with the newest item in the stack being the
front of the topological sorting. [3]

2.4 Kahn’s Algorithm
Kahn’s algorithm is another way to topological sort in a directed
acyclic graph. Kahn’s algorithm works by assigning an indegree
to each node corresponding to the number of incoming edges the
node has. It will then go through all nodes with an indegree of 0,
move them to the next open position in a list of sorted nodes, and
modify the indegree of any of that node’s children by subtracting
1. It will then repeat this process until all nodes have been moved
to the sorted list. [5]

2.5 FELINE
The FELINE algorithm is the foundation of our adapted path
finding algorithm. FELINE works by associating every vertex
with a unique ordered pair of natural integers (x, y).
Geometrically, (a, b) ≼ (c, d) means that the coordinate (c, d) is in
the upper-right quadrant of the two-dimensional Cartesian system
in comparison to (a, b). It also means that the vertex at (a, b)
dominates (c, d). [1] A dominance region of a vertex is the

rectangular region of the graph where both x and y values of the
point are greater than the x and y values of the vertex. [1] Given a
DAG G, every vertex is associated with a pair (x, y) ∈ N2 such
that, for any two vertices u, v∈ G, if there is a directed path from
u to v, then the x-coordinate of u is less than or equal to the
x-coordinate of v and y-coordinate of u is less than or equal to the
y-coordinate of v. [1] The resulting index can be represented
graphically. The pair of integers (x, y) associated with a v. Figure
2 shows an example of a small DAG and its index to establish
reachability.

Figure 2: A DAG and its related index, where each row
represents the coordinate of a vertex. [1]

The ≼ relations between the vertices (or points in the plane) are
illustrated in Figure 3, where the dashed lines express the
reachability area starting from each vertex. [1]

Figure 3: An example of a dominance region. [1]

In Figure 3, even though node h falls within the dominance region
of node d, h is not reachable through d. Therefore, FELINE can
only be used for pruning nodes and cannot always determine if

there h is reachable from d from just comparing dominance
regions.

FELINE uses two algorithms, one to build the indexes and the
other to establish reachability. The first algorithm, shown in
Figure 4 below, generates the coordinates for the index. The x
coordinates are determined by an undefined topological ordering
algorithm while the y coordinates are calculated using a variation
of Kahn’s algorithm shown in Figure 4. [1]

Figure 4: FELINE algorithm 1 for index construction. [1]

The second algorithm used in FELINE is in regards to reachability
and is detailed below in Figure 5. For two vertices u and v, it first
checks whether u is equal to v. No search is needed for getting the

non-reachability between u and v. Only if i(u) ≼ i(v), FELINE
has to explore all vertices inside the region between u and v
recursively via DFS. [1]

Figure 5: FELINE algorithm 2 for reachability. [1]

3 Our Implementation
Our implementation was similar to FELINE but had several
differences. Most importantly, we added a third set of indices to
use for pruning. Additionally, since the FELINE paper did not
give specifics on which topological sorting they used to assign
values to their x-coordinates, we decided to use a DFS approach
to topological ordering. Finally, rather than using the variation of
Kahn’s algorithm shown in Figure 4, we used a different variation
where after removing a vertex from the graph, if any of the
vertex’s children’s indegree was reduced to 0, we would
recursively call Kahn’s algorithm on those children.

3.1 Data Collection
For our dataset, we chose to use the family of Queen Elizabeth II.
Since she is a public figure, much is known about her and her
family. Additionally, Wikipedia makes this information easily
accessible and even provides hyperlinks to her immediate family
members who also have links to their children and parents.
Wikipedia, unlike many other sites, permits web scraping.
Therefore, we can recursively go through a person’s Wikipedia
page, connect them to their immediate family members, and
recurse on those new members. By doing this, we can construct a
family tree of over 7,324 people who are somewhat related to
Queen Elizabeth II. To keep this graph acyclic, we decided to
define an edge from u to v as “u is a parent of v”. The graph has
7,324 vertices and 11,451 edges.

3.2 Data Analysis
To analyze our data, we began by distributing three sets of indices
to each person in our dataset. The first set of indices was
determined through the DFS topological sort described in section
2.3. The second set of indices was determined through the
topological sort created by Kahn’s Algorithm which was
described in section 2.4. The third set of indices was determined
through another DFS topological sort. However, we used the
TreeMap data structure to iterate through the nodes in the reverse
order that we had used when assigning the first set of indices to
the coordinates. Thus, this gives us a new unique topological
ordering which can be used for additional pruning in the later
steps of the algorithm.

After distributing indices to our data, we created a set of
1,000,000 pairings of random people from our graph. Each pairing
within the set was analyzed to see if the second item in the pairing
could be reached from the first item in the pairing through 4
different approaches. The first approach was a DFS approach that
used no pruning. The second approach used just the indices from
the DFS topological sort for pruning. The third approach used the
indices from the DFS topological sort as well as the indices from
the Kahn’s algorithm topological sort. The fourth approach used
all three third indices for pruning.

For robustness of the scraping algorithm, and to assure that we
have no cycles, we added an error checker. One of the features of
the error checker prints out any cases where it finds a person who
has more than 2 parents. This does happen several times, but we
found that this is due to Wikipedia labeling step-parents as real
parents. Since this does not cause any cycles in our graph, we did
not feel the need to make any changes to this section. Another
feature of the error checker is that it asserts that each of the three
sorting algorithms is a valid topological ordering. It does this by
making sure that for any vertex on the graph, each of the three
indices that it was assigned is less than the corresponding indices
in all of its children. By repeating this for each vertex on the
graph, we can assure that we have a valid topological ordering.

The time it took for each important step in the process was
tracked. We recorded the time it took to scrape Wikipedia, assign
indices, and answer all 1,000,000 queries using each of the four
different approaches. The source code for the data collection and
analysis is publicly available on GitHub at
https://github.com/akdukaan/royal-family-mapper.

The program then wrote information about each person including
their name, indices, and their children to a JSON file which was
then graphed using another program we wrote which can be found
at https://github.com/akdukaan/royal-family-plotter. We used this
second program to plot the data from two different perspectives.
The first way was a 3-dimensional scatterplot showing all three
indices of each point. The second way was a 2-dimensional
scatterplot which shows the indices from the first two sorting
algorithms and represents the third index using color.

3.3 Proof of Correctness
Both the DFS topological sort and Kahn’s algorithm have been
proven to be correct. [3,5] Since our algorithm uses both of these
algorithms, it must also provide correct results. Additionally, our
error checker described in section 3.2 provides further evidence
that each part of the graph is correctly sorted.

3.4 Complexity Analysis
The complexity of Algorithm 1 of FELINE used for index
construction is O(|V|log|V|+|E|) because all edges are enumerated
and roots stored as a max-heap structure. Since the algorithm uses
a O(|V|+|E|) topological ordering, its final complexity is
O(|V|log|V|+|E|). Our adapted version of FELINE’s Algorithm 2
takes time O(1) when for two vertices u, v ∈ G, either u and v
belong to the same strongly connected component or the weak
dominance relation does not hold. In the worst case, our algorithm
may need to traverse the entire graph, in which case the
performance complexity of doing so would be O(|V|+|E|). [1]
Since our algorithm mirrors FELINE quite closely, the complexity
is similar.

3.5 Performance Guarantees
Our algorithm has a bounded performance guarantee since all
parts of the algorithm have a bounded performance guarantee. The
three parts of our algorithm are the assignment of indices, the
pruning of nodes, and the DFS which is performed if the goal
node falls within the dominance region of the starting node. All of
our index assignment algorithms have a bounded performance
guarantee. Since FELINE has a bounded performance guarantee,
we know that all parts of our algorithm that were in FELINE also
have a bounded performance guarantee. [1] Our algorithm adds
another DFS topological sort, and since we already know that
DFS topological sorts have bounded performance guarantees, this
one must also be bounded. Since all parts of our algorithm have
bounded performance guarantees, we know that our algorithm
also has a bounded performance guarantee.

4 Results
The total time to construct all three sets of indices was 35ms. This
value is very small in comparison to the total time it takes to
compute the set of 1,000,000 queries, and would become
negligible with a larger quantity of queries.

Time (s) Percentage
of original

Marginal
drop

No Pruning 60.771 100% -

1D Pruning 4.291 7.1% 92.9%

2D Pruning 2.447 4.0% 3.1%

3D Pruning 1.624 3.3% 0.7%

Figure 6: A tabular comparison of the time needed to compute
1,000,000 identical queries using varying degrees of pruning.

Figure 7: A graphical comparison of the time it takes to
compute 1,000,000 identical queries using varying degrees of
pruning.

https://github.com/akdukaan/royal-family-mapper
https://github.com/akdukaan/royal-family-plotter

From Figures 6 and 7, we can clearly see that adding additional
dimensions of pruning continues to increase the efficiency of
querying the graph. The first dimension adds the greatest marginal
performance improvement with a 92.9% drop in the query time.
Additional dimensions further decrease query time, but the
marginal rate decreases as additional dimensions are added. As
indicated in Figure 6, the second dimension of pruning shaves
3.1% from the previously pruned version, and the third dimension
shaves only 0.7%. Adding any further dimensions could be seen
as nonsensical as the marginal performance improvement
decreases while the additional marginal storage needed to store
the additional set of indices remains constant.

Our algorithm also created two graphs to help visualize the
outputted data. Figure 8 is a two-dimensional graph that uses
color to show the third dimension. The lighter, more yellow colors
depict a higher value for the inverse DFS topological sort indices
while the darker, more purple colors depict a lower value for that
same index. By using color, we can show all three dimensions of
the sorted vertices using a two-dimensional graph. Figure 9 is a
three-dimensional graph that shows the same data and color
scheme across the z- dimension for easier visualization.

Figure 8: A two-dimensional depiction of the indices of 7,324
vertices on a graph where color represents the values of the
third set of indices.

A trend in the data can be observed in figures 8 and 9 regarding a
positive correlation between each of the axes. In a graph where
there exists an edge pointing from vertex v to vertex u, we know
that the topological ordering must always place v before u. This
must be true for any topological ordering including the three
topological orderings that were used to assign indices to
coordinates. Therefore, each edge reduces the range that any point
can exist in a topological ordering and therefore, fixes the vertex
in the graph toward a specific location in all three axes.

Figure 9: A three-dimensional depiction of the indices of 7,324
vertices on a graph.

5 Conclusion and Future Work
In conclusion, the results show a successful adaptation of the
FELINE algorithm for the use case of Queen Elizabeth’s family
tree. The computational time saved through pruning is quite large
and incorporating additional dimensions further improves
performance. The robustness and scalability help in its application
for further uses.

For future work, it could be important to determine what types of
graphs can work best with this algorithm. We would like to
consider the effects of graphs of varying size, density, and
reachability. The example covered in this paper of Queen
Elizabeth II creates a medium sized graph. Running this algorithm
on other datasets of smaller and larger sizes could help determine
which types of graphs this works best for. We predict that our
algorithm would work better for larger graphs as a DFS on a large
graph could require a lot of computation time. Our algorithm
helps prune nodes from the graph which saves time from having
to perform these heavy searches. We would also like to test the
effect of varying density and reachability within the graph. The
example covered in this paper creates a graph where each node
typically has only one or two incoming edges because of the
number of parents that people have. Comparing the performance
results with graphs of varying density and reachability would help
in understanding the relevance of these different types of
connections in computational analysis.

Another area of future work could consist of further adding more
dimensions for further pruning. It could be interesting to see at
what point the efficiency of the graph decreases with additional
dimensions due to the needed additional comparisons. Since any
given graph has a fixed number of possible topological orderings,
it is possible that at one point, the algorithm could be comparing
two near-identical orderings which causes a lot of unnecessary
computations. We predict that graphs of even larger sizes would
benefit more from being topologically sorted in additional ways
while smaller-sized graphs would likely be hurt by this. Lastly,
comparing all the various conditions including dimensions,
density, reachability, size for running the algorithm optimally
would help in further refining its use in practical applications.

ACKNOWLEDGMENTS

We would like to acknowledge Professor Yinghui Wu and TA
Mengying Wang for their help in formulating our work and
providing guidance on our selected topic.

REFERENCES

[1] Veloso, Renê Rodrigues, Loïc Cerf, Wagner Meira Jr, and
Mohammed J. Zaki. "Reachability Queries in Very Large Graphs:
A Fast Refined Online Search Approach." In EDBT, pp. 511-522.
2014 https://openproceedings.org/EDBT/2014/paper_166.pdf
[2] Thulasiraman, K.; Swamy, M.S.N. (1992), "5.7 Acyclic
Directed Graphs", Graphs: Theory and Algorithms, John Wiley
and Son, p. 118, ISBN 978-0-471-51356-8
[3] “Topological Sorting.” GeeksforGeeks, January 18, 2022.
https://www.geeksforgeeks.org/topological-sorting/.
[4] “Introduction to Topological Sort.” Leetcode. Accessed May
1, 2022.
https://leetcode.com/discuss/general-discussion/1078072/introduct
ion-to-topological-sort.
[5] “Kahn's Algorithm for Topological Sorting.” GeeksforGeeks,
January 21, 2022.
https://www.geeksforgeeks.org/topological-sorting-indegree-base
d-solution/.

